

声发射 ▲ ■ 工作站 用户手册

版本: V1.0.1

2025.10.14

www.ae-ndt.com 邮箱: sales@ae-ndt.com 微信: 广州清诚声发射

电话: 400 688 6499

目录

1	声发射 AI 工作站	2
2	硬件介绍	3
3	数据格式转换	4
	3.1 pra 格式转化为 csv 格式	4
	3.2 aed 格式转化为 pcm 格式格式	5
4	网格标注声源定位 GAL	6
	4.1 原理介绍	6
	4.2 操作说明	7
5	参数数据模式识别 PPR	11
	5.1 操作说明	11
6	波形数据模式识别 WPR	14
	6.1 操作说明	14
7	参数数据的聚类声源分类 PCSS	16
	7.1 操作说明	16
8	波形数据的聚类声源分类 WCSS	18
	8.1 操作说明	18

1 声发射 AI 工作站

声发射技术作为一种重要的无损检测方法,广泛用于材料内部缺陷和结构完整性的评估。 声发射 AI 工作站使用了 GPU 加速,提高海量数据的训练效率,同时可以自带清诚开发的 5 大基于人工神经网络深度学习的 AI 功能,满足不同领域的需求。

声发射 AI 工作站集成了先进的深度学习技术与强大的硬件配置,采用 NVIDIA RTX4090, 搭载 CUDA12.4 系统软件,加速了神经网络的计算过程,提升训练迭代速度,在深度学习模型训练中可大幅度缩短训练时间。

RTX4090GPU加速下,10000次训练周期, 10 分钟内完成

无GPU加速环境下,10000次训练周期 需要几小时完成

图 1-1 GPU 加速与无 GPU 加速效果对比图

❖ 5 大基于人工神经网络深度学习的 AI 功能

- 网格标注声源定位 GAL(Grid Annotation Location): 无需声源解析定位算法,
 任意复杂结构网格标注,输入声源到达时间与信号参数即得到声源的精准定位。
- 波形数据模式识别 WPR(Waveform Pattern Recognition): 波形数据的训练和识别用户指定的声源模式例如开裂、异物碰撞、铅芯折断等。
- **参数数据模式识别 PPR(Parameter Pattern Recognition):** 参数数据的训练和识别用户指定的声源模式例如开裂、异物碰撞、铅芯折断等。
- 参数数据的聚类声源分类 PCSS (Parameter Clustering Source Separation): 无
 监督聚类算法声源分类,例如可分出开裂、碰撞、铅芯折断等声源等。
- 波形数据的聚类声源分类 WCSS(Waveform Clustering Source Separation): 无
 监督聚类算法声源分类,例如可分出开裂、碰撞、铅芯折断等声源等。

2 硬件介绍

服务器选用华硕 i9 14900K 深度学习工作站,带有 i9-14900K 处理器及 DDR5 高频内存, 24 核心 32 线程, 3. 2GHz 主频,工作站至高支持 192G DDR5 5200MHz 高频内存,充分释放系 统潜能,减少因内存不足引起的卡顿。

2TB M2 大容量固态硬盘, NVMe PCIe4.0×4 高速读写通道, 读取速度 3500MB/s, 写入速度 2800MB/s, 迅速读写,显著提升系统工作效率。

RTX4090配合CUDA软件实现超高效率运算。CUDA是用于GPU计算的开发环境,它是一个全新的软硬件架构,可以将GPU视为一个并行数据计算的设备,对所进行的计算进行分配和管理,提高数据训练效率。

表 1 服务器硬件配置表

处理器	i9 14900K		
内存容量	192G		
显卡	RTX4090 (注: 支持插入两张 RTX4090 的 GPU, 也可根据用户选装 1 块)		
硬盘容量	2T 固态硬盘		
内存类型	Non-ECC		
电源类型	非冗余		
硬盘类型	SAS 混合硬盘 SATA		
支持 CPU 颗数	1颗		
散热	加强版 360 一体式水冷散热器		

3 数据格式转换

目录结构: Execute. dll 是程序公用的 dll,需要放在一起; CLASSIFICATION_PARAM. exe 是 参 数 模 式 识 别 程 序; CLASSIFICATION_WAVE. exe 是 波 形 模 式 识 别 程 序; PARAM_CLUSTERING. exe 是参数聚类程序; WAVE_CLUSTERING. exe 是波形聚类程序; SOURCE LOCATION. exe 是参数定位程序。

图 3-1 文件目录结构

使用 5 大基于人工神经网络深度学习的 AI 功能时,首先需要将.pra 和.aed 格式的数据文件转化为 csv 格式和 pcm 格式。

网格标注声源定位 GAL、参数数据模式识别 PPR、参数数据的聚类声源分类 PCSS 功能需要 csv 格式的数据才能正确使用。

波形数据模式识别 WPR、波形数据的聚类声源分类 WCSS 功能需要 pcm 格式的数据才能正确使用。

3.1 pra 格式转化为 csv 格式

打开【**深度学习文件格式转换工**具】程序点击【U3H **参数分组转** CSV 2】,点击【**保存 到**】选择数据保存路径,点击【**开始转换**】。

图 3-2 CSV 参数格式示例

3.2 aed 格式转化为 pcm 格式

● aed 格式转化为 WAV 格式步骤

打开【深度学习格式转换工具】文件夹→打开【深度学习文件格式转换工具】→点击【U3H 波形转音频】按钮选择 aed 格式的波形数据→点击【保存到】选择 WAV 格式数据保存路径→ 设置完成后点击【开始转换】。

● WAV 格式转化为 pcm 格式步骤

aed 格式转换为 WAV 格式后,需要将 WAV 格式转化为 pcm 格式: 打开【WAV2PCM. exe】程序。点击【Browse】选择已经分好目录的 WAV 格式的波形文件,点击【Convert WAV to PCM】。

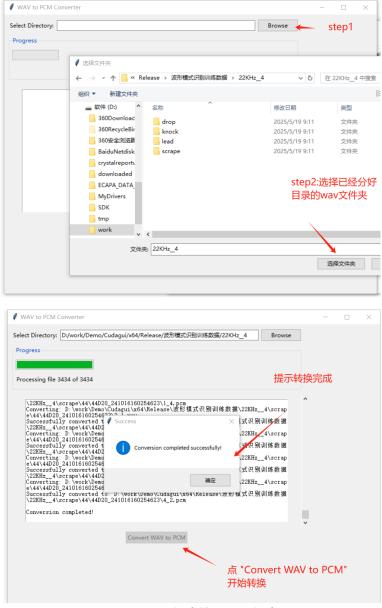


图 3-3 aed 格式转化 pcm 格式

4 网格标注声源定位 GAL

4.1 原理介绍

无需声源解析定位算法,在任意复杂结构网格标注,输入声源到达时间与信号参数即得 到声源的精准定位。

实现流程: 网格标注与监督训练数据生成一有监督训练模型 GAL 得到 A 网格标注数据的定位模型 ALM—输入实测数据 T 到定位模型 ALM,得到定位结果网格号。

开始

[网格划分]:根据待测结构的几何形状、材料特性及声波传播特性对被测结构划分网格;对于规则结构使用等距正方或矩形网格,对于不规则结构,根据几何形状及声波传播特性不规则划分网格

[声发射传感器布置]:布置于关键位置(易发生裂纹、应力集中区域或其他易发生缺陷的区域)确保每个网格的训练信号被至少3个传感器采集

[数据采集]: 使用断铅或信号发生器产生脉冲信号 每个网格内至少采集100次 划分测试集和验证集

[人工智能深度学习神经网络模型构建]:构建包含输入层、至少两

层隐藏层、输出层的模型

输入层: N个输入节点(N=传感器数量x参数数量)

隐藏层:每层50~100个节点,Sigmoid/ReLU激活函数输出层:网格数量+1个节点,Sigmoid/Softmax激活函数

[数据预处理]: 对声发射信号进行归一化预处理(最小-最大缩放方法)

[标签数据生成与模型训练]:生成对应网格区域的标签数据;利用标签数据训练模型至收敛;采用Adam或SGD或RMSprop优化算法学习率衰减策略,初始学习率0.001

[模型验证]: 使用验证集声发射信号数据验证模型,判断输出网格编号与实际一致性,同时通过准确率、精确率、召回率和F1分数指标来评价模型

[**声发射源定位**]: 利用训练后的模型分析未知声发射信号数据,输出网格编号,该网格编号即为声发射源的位置

结束

图 4-1 算法流程图

网格标注与有监督训练数据生成

将结构划分为多个网格, 声发射传感器布置在结构上。例如, 风电叶片划分为 1000 个 网络编号 1-1000, 10 个声发射传感器大致均匀间距布置在叶片上。

生成有监督训练数据。每个网格人工产生多个声源信号,例如铅芯折断 100 次,10 个声发射传感器采集数据,该数据标注为网格号 N 组数据,例如 1 号网格 100×10 组标注参数数据。1000 个网格依次标注得到 1000 组网格号 1-1000 编号的网格标注数据集 A。

有监督训练模型 GAL 得到 A 网格标注数据的定位模型 ALM

输入实测数据 T 到定位模型 ALM, 得到定位结果网格号

例如,1个月的监测数据输入到 ALM 结果显示网格编号 3、300、800 有定位结果分别为 500 次、80 次、5 次,说明 3 号网格位置有 500 次声源定位信号,300 网格位置 80 次,800 号网格位置 5 次等声源定位信息。

4.2 操作说明

参数定位功能需要电脑配有 GPU 硬件和装有 cuda 软件。cuda 软件安装教程可参考: https://blog.csdn.net/AI dataloads/article/details/133043869 安装完成后,运行 SOURCE LOCATION. exe 文件。

网格标注声源定位功能数据格式要求:一个. pra 文件对应一个. csv 文件。

格式转换步骤:

- 1、确保已经关闭 SWAE 上位机程序;
- 2、解压 "tools_source_loc" 文件,以管理员身份运行【tool_uninstall.bat】,显示"移动了 1 个文件"后,按 enter 键;
- 3、如果确实不知道是否已经安装成功,或者想重新安装,需要先以管理员身份运行点击卸载工具【tool uninstall.bat】,然后再以管理员身份运行【tool Install.bat】;
- 4、 打开 SWAE 软件,点击【格式转换】,此时显示"文件格式转换-工具已加载";
- 5、参数勾选"到达时间、通道号、幅度、振铃计数、持续时间、能量、上升计数、上升时间、RMS(mv)、ASL(dB)";

图 4-2 参数勾选

6、点击【选择原始数据】选择单个. pra 文件,点击【设置文件保存路径】,勾选". csv",

点击【开始转换】。

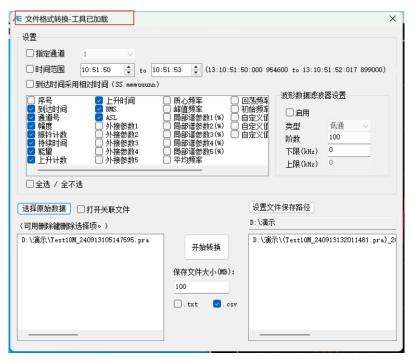


图 4-3 SWAE 软件-文件格式转换

训练参数说明:

- Learning Rate: 学习率,定义了在模型训练过程中参数更新的步长大小,具体表现为 在梯度下降等优化算法中,每次迭代时模型参数基于计算出的梯度进行调整的幅度。
- Max Difference: 最大时间差,单位: 纳秒,设置为两个探头之间最大距离÷声速。
- Max Epochs: 训练次数,训练次数越多,模型识别的正确率越高,但所需的训练时间越长。
- Loss to Reach: 损失函数是用来估量模型的预测值 f(x)与真实值 Y 的不一致程度,当 loss 值小于输入时,停止训练,一般按默认值 0.01。
- Accuracy to Reach: 精确率是指模型预测为正类的样本中,实际为正类的比例,当 Accuracy 值大于输入数值时,停止训练,一般按默认值 0.99。
- Dropout Rate: 是一种用于减少过拟合的正则化技术,指在训练过程中,随机关闭(将 其输出设为0)一定比例的神经元。Dropout rate 是一个在 0 到 1 之间的值,表示 在每个训练步骤中被关闭神经元的比例,一般设置为 0.02。

Training Directory: 选择训练数据。

Model Save Path:保存模型文件目录。该设置项不起作用,可随意设置,一般设置在训练数据目录下。

raining Directory:								
D:\work\project\water resource utility\LXD_DATA\LEFT_FIX_TEST\part1								
Model Save Path: D:\work\project\water resource utility\LXD_DATA\LEFT_FIX_TEST\part1\20002\aemodel.json								
				Learning Rate: 0.1 Max Time Difference (nanoseconds):				
10000000								
Max Epochs:								
					Loss to Reach:			
0.01								
Accuracy to Reach:								
0.99								
Dropout Rate:								
Oropout Rate:								
0.02								

图 4-4 参数定位训练参数图

设置完所有参数后点击【Strat Training】。启动后,会弹出黑框。

图 4-5 数据训练过程图

训练完成后,选择模型路径,选择识别数据路径。点击【Start Prediction】开始识别。

图 4-6 数据识别路径图

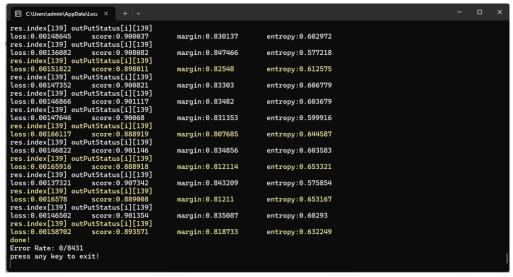


图 4-7 数据识别结果图

白色结果表示:正确率为90%以上。

黄色结果表示:正确率为90%以下。

红色表示:错误识别的数据。


5 参数数据模式识别 PPR

参数数据模式识别需要 csv 格式的数据才能正确使用。具体的操作可以参考 3.1 pra 格式转化为 csv 格式小节的内容。

5.1 操作说明

运行 CLASSIFICATION_PARAM. exe 文件。

点击【Choose Files】选择参数 csv 文件所在的目录,直接下级目录包含以类别标签命名的所有目录分类。

训练参数说明:

隐藏层是位于输入层和输出层之间的一层或多层。其作用是将输入数据转换为更高层次的特征表示。(注:关于配置神经网络隐藏层个数已经隐藏层结点数请参考https://aistudio.baidu.com/projectdetail/5413162)

- Layer xx: 隐藏层节点数。隐藏层层数一般设置一层,节点数可按默认设置,节点设置 范围: 32~64。
- Epochs: 训练次数,训练次数越多,模型识别的正确率越高,但所需的训练时间越长。
- Dropout Rate: 是一种用于减少过拟合的正则化技术,指在训练过程中,随机丢弃神经 节点的概率,一般设置成 0.2 以下。
- Accuracy Threshold: 达到什么样准确率后开始停止训练。
- Loss Threshold: 损失率降到多少后开始停止训练。

Data Selection							
Choose Files 8 files	8 files Select training data directory						
Select which data parameters to use for training the ANN:							
Amplitude (Amp)		✓ Power					
✓ Root Mean Square (Rms)		Average Signal Level (Asl)					
Rising Time		Rising Ringdown Count					
Duration Time		Rising Count					
Peak Frequency		Centroid Frequency					
Network Configuration							
Hidden Layers							
Layer 1: 64	nodes						
Add Hidden Layer							
Epochs: 500	Dropout Rate: 0.2 Accuracy Thr	eshold: 0.98 Loss Threshold: 0.01					
Train Model							

图 5-2 训练参数设置

图 5-3 训练完成后模型评估

模型训练完成后,在 Testing 栏,点击【Choose Files】上传需要识别的参数数据(CSV 格式),上传完数据后,点击【Test Model】训练模型。

图 5-4 参数识别结果

混淆矩阵说明: 以第 1 行第 1 列举例,04 坠落文件夹中,399 个被模型正确识别了,1 个被识别为03 敲击,4 个被识别为02 摩擦。

模型下载:

在 Model Management 栏中点击【Export Model】下载训练好的模型。

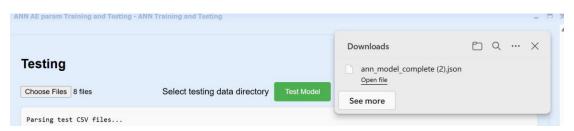


图 5-5 模型下载

点击【Choose Files】选模型,点击【Load Model】即可使用选中的模型进行声发射参数数据识别功能。

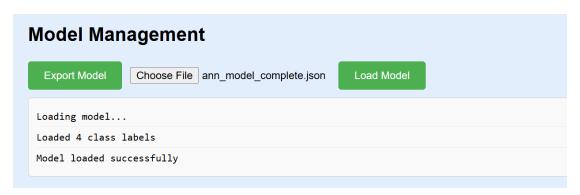


图 5-6 模型导入

6 波形数据模式识别 WPR

波形数据模式识别 WPR 需要 pcm 格式的数据才能正确使用。具体的操作可以参考 3.2 aed 格式转化为 pcm 格式小节的内容。

6.1 操作说明

运行 CLASSIFICATION_WAVE. exe 文件。

点击【Choose Files】选择 pcm 格式的训练数据所在的目录,直接下级目录包含以类别标签命名的所有目录分类。

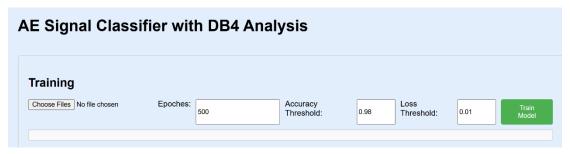


图 6-1 基于声发射波形的模式识别参数

训练参数说明:

- Epoches: 训练次数,训练次数越多,模型识别的正确率越高,但所需的训练时间越长。
- Accuracy Threshold: 达到什么样准确率后开始停止训练。
- Loss Threshold: 损失率降到多少后开始停止训练。

设置完参数后,点击【Train Model】。

图 6-2 模型训练效果

Training 说明:训练集进行训练时,神经网络参数(网络 节点连接 权重)调整过后,算出来的准确率和损失值;

Validation 说明:训练集在训练前,输入神经网络验证得到的准确率和损失值。

在 Prediction 栏中点击【Choose Files】选择 pcm 格式的测试文件,点击【Make Prediction】。

图 6-3 波形识别结果

模型下载: 在 Model Management 栏,点击【Export Model】下载模型。

图 6-4 模型下载

模型调用:在 Model Management 栏,点击【Choose Files】选择模型。点击【Load Model】。

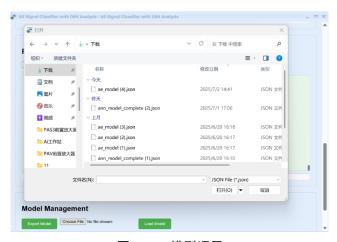


图 6-5 模型调用

7 参数数据的聚类声源分类 PCSS

参数数据的聚类声源分类 PCSS 需要 csv 格式的数据才能正确使用。具体的操作可以参考 3.1 pra 格式转化为 csv 格式小节的内容。

7.1 操作说明

运行 PARAM CLUSTERING. exe 文件。

点击【Choose Files】选择 csv 格式的训练数据所在的目录,直接下级目录包含以类别标签命名的所有目录分类。

Clustering Analysis Tool Data Input Upload CSV Files: Choose Files 8 files Number of Clusters: 4 Run Clustering

图 7-1 基于声发射参数的聚类识别参数

训练参数说明:

● Number of Clusters:数据需要分多少类别。

设置完参数后,点击【Run Clustering】。

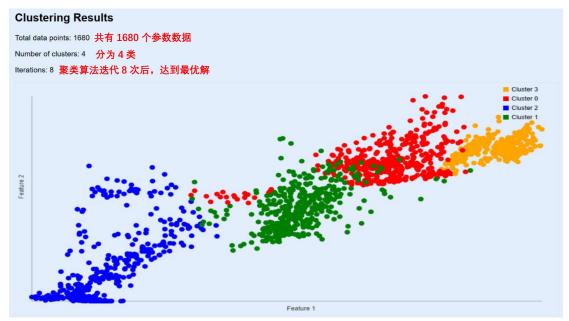


图 7-2 参数聚类结果总览图

图 7-3 按簇划分的标签分类

不同颜色代表不同的聚类,分类后,用户可根据分类详细结果,在.csv 文件中进行人工挑选,按类别放置并打标签。

图 7-4 所有数据点的分类

8 波形数据的聚类声源分类 WCSS

波形数据的聚类声源分类 WCSS 需要 pcm 格式的数据才能正确使用。具体的操作可以参考 3.2 aed 格式转化为 pcm 格式小节的内容。

8.1 操作说明

运行 WAVE CLUSTERING. exe 文件。

在 Data Input 栏,点击【Choose Files】选择参数 pcm 文件所在的目录,直接下级目录包含以类别标签命名的所有目录分类。

PCM Clustering Analysis Tool				
Data Input				
Upload PCM Files: Choose Files No file chosen Number of Clusters: 4 Run Clustering				

图 8-1 基于声发射波形的聚类识别参数

训练参数说明:

● Number of Clusters: 数据需要分多少类别。

设置完参数后,点击【Run Clustering】。

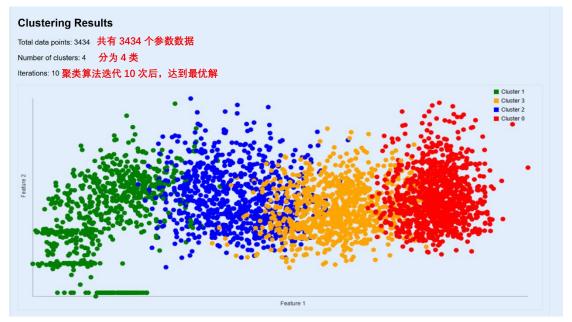


图 8-2 波形聚类结果总览图

图 8-3 按簇划分的标签分类

不同颜色代表不同的聚类,分类后,用户可根据分类详细结果,在.csv 文件中进行人工挑选,按类别放置并打标签。

图 8-4 所有数据点的分类